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Abstract

The research performed with the support of this grant has focussed on the graph theoretical
issues of colorings of various forms, connectivity issues of a traditional form and as applied to
network vulnerability, and some work on extremal and worst-case scenarios.

Coloring problems considered included the development of the method of amalgamations,
which takes an “outline” version of a structure of interest and shows how to develop it into the
completed version. This produced, for example, a constructive proof that there exist hamilton
decompositions of complete multipartite graphs that are fair in the sense that the edges between
pairs of parts are shared out evenly among the hamilton cycles. The method was also improved
to the point where notable results concerning connected k-factorizations were obtained.

Several results were obtained on list-colorings, fractional colorings and greedy colorings of
graphs. For example, a study of extensions of the classic theorem of Hall on systems of district
representatives was applied to list colorings. Algorithmic methods were also developed for
considering proper list-(multi)colorings.

Network vulnerability was an issue studied in connection with the Shields-Harary number
of a graph. This involves enemies removing weighted vertices at a certain cost, trying to break
the graph into components of small weight, while defenders arrange the weights on the vertices

to exact the greatest payment possible by the enemy.



Detailed Final Report

I. Amalgamations, Hamilton Cycles and Connectivity

One of the successful lines of research associated with this grant has been the development of the
powerful graph decomposition method, known as amalgamations of graphs. The idea is to “squash
together” (formally, this is a graph homomorphism) vertices in some family of graphs, then to
describe enough properties satisfied by the resulting structure that we can prove that any structure
satisfying these properties can be “pulled apart” into a graph of the original type. Edge-colorings
play a central role in the difficult step of “disentangling” the vertices.

To test the power of this method, we focussed on several hamilton decomposition problems,
so connectivity was also a central issue in this study. We began by solving the problem: How
big could a maximal set of edge-disjoint hamilton cycles in G = K, be? (Or, how many edge-
disjoint hamilton cycles could one find in K, . if a greedy algorithm was used?) The answer turns
out to be anywhere from n/4 to n/2 [14]. We have since then tried to solve the corresponding
problem when G is a complete multipartite graph, coming very close to a complete answer [39].
Amalgamations have worked very well, but in every case we have only been able to squash together
vertices occurring in the same part. This makes it difficult to find the initial configurations; so
further results on the technique are worth proving. Such improvements may also be necessary to
solve the related problem of funding maximal sets of 1-factors in complete multipartite graphs.

One of the major steps forward in our knowledge of amalgamations was made using a result of
Nash-Williams on laminar sets. It enabled us to solve the problem of deciding when an edge-colored
multigraph with loops could be the amalgamation of an edge-colored complete graph in which each
color class is connected [38]. This allowed us to address the captivating question: When can an
edge-colored K, be embedded as an edge-colored K, in which each color class is a connected &-
factor? (The color classes in the given K, may be highly disconnected.) This requires disentangling
the amalgamated graph without disconnecting any color class, a technique that is also discussed in
[28]. Together, these methods enabled us to solve a problem that seems impossible to obtain using
the “tried and tested” techniques; namely, to show when there exists a hamilton decomposition of

K., » once the edges of any specified 2-factor have been removed. We have since then extended the




results to consider complete multipartite graphs [40].

Perhaps the most exciting result we found along these lines has the flavor of scheduling too. A
hamilton decomposition of the complete multipartite graph is said to be fair if, between each pair
of parts, the edges have been distributed as evenly as possible among the hamilton cycles. (For
example, if each of 5 parts contains 10 vertices then each vertex has degree (5 — 1)10 = 40 so there
are 20 hamilton cycles. Between each pair of parts there are (10)(10) = 100 edges; so each of the
20 hamilton cycles would have 5 edges between each pair of parts.) Amalgamations turned out to
be the perfect tool that allowed us to solve this [32] when no other method seemed to make any
headway.

Connectivity has also been of interest in studying two important families of graphs - cages
and Johnson graphs. We have conjectured that cages, which are necessarily k-regular, are also
k-connected. We did show that they are 3-connected [7], but making progress here seems to be
very difficult. The defining properties of a cage (k-regular, fixed girth, as few vertices as possible)
do not lend themselves well to this problem, though we still believe it to be true. It seems much
more likely that it will be possible to show that they are all k-edge-connected. In [13] we found a
new proof (from first principals) that showed that the Johnson graphs, which are also k-regular,
do have connectivity k.

While dealing with partitions of the edges of the complete multipartite graph, each element of
which induces a hamilton cycle, we wondered what would happen at the other extreme if small
cycles were used instead of hamilton cycles. So several results were obtained for finding edge-
disjoint 4-cycles in a complete multipartite graph, G. Unlike the case for hamilton decompositions,
G now did not need to be regular. (This is also the case when considering maximal sets of edge-
disjoint 1-factors in G, so resolvable versions of our results would help to solve this problem too.)
We did manage to solve this problem, as well as consider what edges may be left out if no such
decomposition exists. If G = K, then the possibility of omitting the edges in any specified 2-factor
is settled in [27], and of omitting the edges in any specified forest is settled in [15]. If G is a complete
multipartite graph then this general problem is addressed in terms of finding the least number of
edges that occur in none of the cycles [25].

On a related problem, but with a different task, if 3-cycles are used instead of 4-cycles (and

to some extend with 4-cycles too) then these results are of some statistical interest. We [33] have



managed to extend known results of partitioning into 3-cycles the edges in G = K,, — E(H) (Ka
with the edges in a hamilton cycle removed); in particular G is replaced by a grid graph with a
hamilton cycle in each row and in each column removed. Such a decomposition is of statistical
interest when grounds are tested for, say, chemical remains in a dump site, and one can reasonably

expect neighboring plots of land to have similar pollutants.

II. Graph Colorings

A. List-colorings [1, 4, 8, 10, 17, 21, 30, 31, 35].

[1] is a connection between the so-called “restricted choice numbers” of the complete bipartite
graphs K, », and the famous covering numbers C(n, k,t), n > k > ¢, the size of a smallest
collection of k-subsets of an m-set such that each {-subset of the n-set is a subset of some
member of the collection. The connection between these important numbers and the attempt
to color K, n, under certain restrictions is one that we hope to return to some day.

[35] is on a novel departure in list coloring, in which one assigns sets from a measure space
to the vertices of a graph and attempts to properly color the vertices with subsets of the
assigned sets of prescribed measure. We do not know where this might lead; we have other
work on this matter in progress.

The other papers on list-colorings are about Hall’s condition, a numerical condition, neces-
sary for the existence of a proper list-(multi)coloring, discovered by Hilton and Johnson in
1989. The results are too numerous to summarize, but it is worth noting that [8] gives a
partial solution of a major problem in this area, subsequently solved by Cropper, Gyarfas,
and Lehel using some techniques from [8]. Also, [8] contains the beginnings of algorithmic
methods and proofs in list-multicolorings. In [41], we give an algorithm for multi-list coloring
a graph consisting of two cliques sharing a vertex. While such a network flow algorithm was
independently discovered, ours is novel in that it uses algorithmic results on matroid inter-
sections. Also, [10] and [30] are large contributions to the solution of another tough problem,

since settled by Eslahchi and Matthew Johnson.

In [42], we observed that the notion of a multi-list coloring of graph can be extended to the

much more general class of independence systems. There again, there is a corresponding



necessary 'Hall-type’ condition for the existence of such a coloring. We established this
condition to be necessary if the independence system is a matroid, using the theory of matroid

sums.

. Fractional coloring [5, 9, 17, 35]

[35] is commented on above. [17] concerns fractional and list-multicoloring parameters, the
fractional versions of which are mentioned in the title. The most interesting results there are
that the fractional Hall-condition number, also called the Hall ratio, can be strictly less than
the fractional chromatic number, and that the k-fold Hall number of the claw is asymptoti-
cally equal to 5k/3. Incidentally, it is shown in [35] that the aforementioned Hall ratio is a
lower bound on the full menagerie of fractional chromatic numbers definable with respect to
probability measure spaces, as described in [35]. Papers in [5, 9] are surveys of recent de-
velopments in fractional graph theory, with special attention to fractional Euclidean Ramsey
problems. Although results in this area, and especially on the matter of fractional list-coloring
parameters [17, 35], seem a bit abstruse at present, this may be an area rich in applications

to scheduling and allocation problems.

. Greedy coloring [3]
It is proven that the Grundy number of the cube, @, is n + 1, unless n = 2. In the process,

a nice chunk of potentially useful game theory is exposed.

. Euclidean Ramsey problems [5, 9, 11, 16, 20, 22]

Most of these problems are about coloring infinite graphs defined with reference to a set of
distances. (Sample problem, dealt with in [22]: for which £ > 1 and s > O can a 1 X £
planar rectangle be three-colored so that no two points a distance s apart are the same
color?) Because of the Debruijn-Erdés compactness theorem, such problems are also about
the finite subgraphs of these infinite graphs. These problems are at the gee-whiz stage now,
but they may be fundamental in allocation or scheduling problems involving distance, and

they certainly bring a new point of view to computational geometry.



IT1. Network Vulnerability [12, 18, 23, 24]

Except for [24], these papers are about a kind of network vulnerability defined by Johnson, inspired
by unpublished work of Shields and Harary on a problem of the former. We start with a weighted
network, a graph with weights on the vertices. An enemy wishes to dismantle this network by
removing vertices until the sum of the weights on each connected component of what’s left is less
than some threshold value. The enemy pays for removing vertices — the cost for each vertex is
a decreasing function of the weight at the vertex. (Decreasing, on the premise that the juiciest
targets are hardest to defend.) The defenders of the network have to arrange the weights to exact
the greatest payment for dismantling, from the enemy.

(18], which was actually written before [12], is a compendium of almost everything known about
this situation up to the time of its writing. [24] is about a different sort of attack situation, thought
up by Matthew Walsh: we still have a weighted network, and an enemy who wishes to dismantle
it, as before, but now the enemy has no information about the structure of the network, and pays
nothing for the destruction of a vertex. Rather, there is a probability, an increasing function of the
weight at a vertex, that the vertex will be discovered and destroyed by the enemy. This time, the

defenders wish to minimize the probability of dismantling.

IV. Structure of extremal graphs [6, 29, 34, 36, 37]

In earlier work it was shown that the graphs extremal for certain inequality are the “nearly strongly
regular” graphs, regular graphs such that for some ¢, any two adjacent vertices have ¢ common
neighbors. In [6] it is shown that for such a graph of degree d on n vertices, if t = 0 and 2d = n — 2
(i.e., the joint neighborhood of any two adjacent vertices covers all but two vertices of the graph)
then either the graph is a complete bipartite graph, or the graph is one of two non-bipartite graphs,
of order 8 and 10 respectively; It is also shown that if ¢ > 0 and 2d — ¢ = n — 2, then n < 3t + 6.
In [29] it is shown that n = 3t + 6, with 2d — t = n — 2, is achievable for every ¢ > 0, by and only
by the tripartite graph K12 44242 minus a two-factor consisting of K3’s.

[34] is about a number of inequalities relating the average degree of a graph to the average
numbers of common neighbors and of joint neighborhoeod sizes; in every case, the extremal graphs

are merely regular.



[36] and [37] are about (¢, r)-regular graphs, non-cliques in which for every independent set of
t vertices, the union of their neighbor sets has cardinality r. It turns out that fort > 1 and for
n > N(¢,r), every such graph on n vertices must have a certain 'structure. In [36] a proof of this
fact for t = 2 is given which shows that r2/16 < N(2,r) < r2, for r > 3, and in [37] a first proof of

this fact, and a description of the structure and an estimate of N (t,r), is given for every ¢ > 2.
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